

Moniteur offers the industry's best mechanical switches to handle a wide variety of applications, meeting the tough demands of today's process industries. A full range of mechanical snap-acting switches is available, including:

- Cherry 15A - 125-250 VAC SPDT
- ITW 10A - 125-250 VAC DPDT
- Prism 1A-24 VDC Gold-Plated SPDT
- C\&K SPDT for 125-250 VDC

Applications:

- Mechanical SPDT switches are the most common switch used due to their low cost and proven reliability for general purpose applications. In addition to transmitting valve position, the switch's high amp rating can control a relay, or other plant devices such as pumps or motors. Moniteur specifies stiffer contact springs that resist dirt and freeze-up in cold conditions.
- Mechanical DPDT are used for simultaneous switching functions when two independent signals must operate in tandem. An example is when one switch sends a low level signal back to the control room, and a second functions controls a relay or another device.
- Gold plated Mechanical switches are used in low current, low voltage (primarily DC) applications. Gold plated switch contacts assure signal stability at extremely low current and voltages, and are used as a low cost alternative in Intrinsically Safe systems.
- Mechanical switches with 125VDC and 250VDC ratings are also available for powerplants using battery voltage.

Moniteur recommends that users check the current requirements of their devices to ensure the switches will not be used beyond their nameplate ratings.

Specifications - Mechanical Switches:

Switch Type	Moniteur Switch Code	AC Rating (resistive)	DC Rating	Form
SPDT (Cherry)	1	$15 \mathrm{~A}-250 \mathrm{VAC}$	$2.5 \mathrm{~A}-24 \mathrm{VDC}$	C
Gold Plated SPDT (Prism)	3	$1 \mathrm{~A}-120 \mathrm{VAC}$	$1 \mathrm{~A}-24 \mathrm{VDC}$	C
10A DPDT (ITW)	4	$10 \mathrm{~A}-250 \mathrm{VAC}$	$7 \mathrm{~A}-24 \mathrm{VDC}$	C
SPDT (C\&K)	C	$15 \mathrm{~A}-250 \mathrm{VAC}$	$0.5 \mathrm{~A}-125 \mathrm{VDC}$	C

